

NDIA PRESENTATION

- Evolutionary Fix of Legacy Systems
- Proper Threat Physics Definition
- Clock Speed Word Length Bandwidth
- Defining the Readiness of Technology
- •NASA and DOD Levels of Incongruity
- Physics Based Description of Possibilities
- Next Hardware Emulation Architectures
- •Reimbursable Unintended Consequences
- •Joint Programs for Future System Science
- People Come for Science and Money

Evolutionary Fix of Legacy Systems

Proper Threat Physics Definition Clock Speed Word Length Bandwidth Defining the Readiness of Technology NASA and DOD Levels of Incongruity **Physics Based Description of Possibilities Next Hardware Emulation Architectures** Reimbursable Unintended Consequences Joint Programs for Future System Science **People Come for Science and Money**

MOVING TO S-CURVE INVESTMENT PAYOFF

There comes a time and requirement wherein one can simply not get there from here without a letting go of the old **Revolutionary Non Legacy Systems**

OPTIMUM SYSTEMS NEED SINGLE BUILD

DESIGNING FOR RETROFIT COSTLY IN MONEY AND PERFORMANCE

The Wheelbase Problem

The Pylon Problem

The Hull Problem

SHIPS OF THE LINE AND TEST SHIPS

Evolutionary Fix of Legacy Systems Proper Threat Physics Definition Clock Speed Word Length Bandwidth Defining the Readiness of Technology NASA and DOD Levels of Incongruity **Physics Based Description of Possibilities Next Hardware Emulation Architectures** Reimbursable Unintended Consequences Joint Programs for Future System Science **People Come for Science and Money**

TARGET DESIGN REALISTIC CONSTRAINTS

VEHICLE MANUFACTURE

CENTER OF GRAVITY

ANGLE OF ATTACK

NOSE TIP AND SHIELD

DEPLOYMENT DYNAMICS

SPIN RATE

ANGULAR RATE

EJECT VELOCITY

TRIM BETA SPIN TIPOFF VELOCITY GAMMA

REAL TIME VERSUS COMPUTER TIME

Evolutionary Fix of Legacy Systems Proper Threat Physics Definition Clock Speed Word Length Bandwidth

Defining the Readiness of Technology
NASA and DOD Levels of Incongruity
Physics Based Description of Possibilities
Next Hardware Emulation Architectures
Reimbursable Unintended Consequences
Joint Programs for Future System Science
People Come for Science and Money

EIGHT YEAR CHANGES

THREAT GROWTH

TECHNOLOGY GROWTH

Evolutionary Fix of Legacy Systems
Proper Threat Physics Definition
Clock Speed Word Length Bandwidth

Defining the Readiness of Technology

NASA and DOD Levels of Incongruity
Physics Based Description of Possibilities
Next Hardware Emulation Architectures
Reimbursable Unintended Consequences
Joint Programs for Future System Science
People Come for Science and Money

TECHNOLOGY ORGANIZATIONS

TECHNOLOGY AND TESTING GOVERNMENT ASSESSMENTS

		S-Band			CC /	X-Band						
		FY 05 / 06			FY 09		8	FY 05 / 06		FY 09		09
		Current TRL1	Risk Factor ²		Current TRL ¹	Risk Factor ²		Current TRL ¹	Risk Factor ²		Current TRL ¹	Risk Factor ²
High Power	sic	3	0.15		3	0.09	3	3	0.63		2	0.81
Modules	GaN	_	_		_	_		4	0.30		3	0.20
(9		<u> </u>		_	
Thermal Management	Component	3	0.35		3	0.30		2	0.25		2	0.25
	Module	3	0.25		2	0.15		2	0.20		2	0.20
	Array	4	0.28		4	0.35	5	4	0.28		4	0.35
(**	2					
Digital Radar Architectures	Control	2	0.40		2	0.24		2	0.40		2	0.40
	Integration	3	0.40		2	0.24		2	0.24		2	0.07
	ADC's	6	0.06		6	0.06		6	0.06		6	0.06
(
Algorithm Architectures 〈	Jammer	ß	0.28		3	0.21		2	0.28		2	0.21
	Clutter	3	0.35		3	0.35	- 8	3	0.35		3	0.35
	Wideband	3	0.30		3	0.25	- 8	3	0.30		3	0.25
Program					100		8					
Independent ∫	Open System	4	0.20		4	0.10		4	0.20		4	0.10
Software 1) Current TRL assessment against need date requirements. 2) Risk Factor for attaining TRL-6 capability at insertion point												

REQUIREMENTS FOR ALL SOURCES

DARPA

BMDO

ONR

INDUSTRY

BILLIONS

INTERNATIONAL

Evolutionary Fix of Legacy Systems
Proper Threat Physics Definition
Clock Speed Word Length Bandwidth
Defining the Readiness of Technology
NASA and DOD Levels of Incongruity

Physics Based Description of Possibilities
Next Hardware Emulation Architectures
Reimbursable Unintended Consequences
Joint Programs for Future System Science
People Come for Science and Money

Critical

Jump

LEAP

TECHNOLOGY READINESS LEVELS

Engineering Manufacturing Development

9

8

7

6

5

4

3

2

1

SM 3

Form and Fit

Flight Test

Ground Test

Integration

Concept

Evolutionary

Revolutionary

DIFFERING READINESS LEVELS

CONSTANT THREAD CAPABILITIES

THREAT AND FUNCTION DRIVEN

FOCUSED SBIR PHASE III TARGETS

Evolutionary Fix of Legacy Systems
Proper Threat Physics Definition
Clock Speed Word Length Bandwidth
Defining the Readiness of Technology
NASA and DOD Levels of Incongruity
Physics Based Description of Possibilities

Next Hardware Emulation Architectures Reimbursable Unintended Consequences Joint Programs for Future System Science People Come for Science and Money

REVISIT ARCHITECTURE AND TECHNOLOGY

WEAPONS

SYSTEM ENGINEERING

SURVEILLANCE

COMBAT SYSTEMS

ULTIMATE MISSILE

MULTI-MODE

IMAGE EXTRACTION

RANGE RANGE RATE

ANGULAR RESOLUTION

NORMAL ACCELERATION

ON DEMAND PROPULSION

AIR DEFENSE
LAND ATTACK
MISSILE DEFENSE
LOW OBSERVABLE DEFENSE

128 Bits 2000 Megahertz

ULTIMATE RADAR

VISIBLE WIDE BAND

S BAND

X BAND

ULTRA WIDE BAND

RANGE RANGE RATE
FEATURE IMAGING
DOPPLER IMAGING
CROSS RANGE MOTION
HYPER RESOLUTION
EDGE DETECTION
MICRO DYNAMICS
MACRO DYNAMICS
NORMAL ACCELERATION
COHERENT INTEGRATION

128 Bits 2000 Megahertz

ULTIMATE BATTLE MANAGEMENT

SCENE REGISTRATION
CRITICAL STRIKE RATES
FULL VIDEO RATES
EDGE DETECTION
MOTION DETECTION
FORCE NET LINKAGE
NANOSECOND CLOCKS
MULTI DYNAMIC RADAR
LOSSLESS COMPRESSION

128 Bits 2000 Megahertz

Evolutionary Fix of Legacy Systems
Proper Threat Physics Definition
Clock Speed Word Length Bandwidth
Defining the Readiness of Technology
NASA and DOD Levels of Incongruity
Physics Based Description of Possibilities

Next Hardware Emulation Architectures

Reimbursable Unintended Consequences Joint Programs for Future System Science People Come for Science and Money

FULL IMAGE TIME AND SPACE DATA SET

STREAMING VIDEO COMMERCIAL DRIVER

IMAGE CONVOLUTION

Spatial and Temporal Analysis

Uniformity
Correction
Sub Pixel Resolution
Dynamic Range
Edge Detection
Velocity Fields
Motion Detection
Data Compression
Scene Registration

CONVOLUTIONS TOO CHEAP TO METER

Analog Image Processing

Hybrid Silicon ASIC Conjugated Polymer Device

DISCRETE AND CONTINUOUS WAVELET TRANSFORMS

Digital Parallel Gate Arrays

Analogue Silicon Retinal Arrays

SPATIAL TEMPORAL MOTION SPACE

Analogue Silicon Retinal Arrays

MERIT	ASIC	TAIP
CHIPS		
TFLOPS		
POWER		

COMPARISON OF ASIC AND TAIP CHIPS

Image format (kernel size)	UNITS	ASIC DSP	TAIP Array		
	MFLOPS	184	184		
256 x 256 (8 x 8)	Power (W)	1	0.1		
	# of chips	1	1		
	GFLOPS	1.8	1.8		
1000 x 1000 (8 x 8)	Power (W)	16	1.6		
	# of chips	16	1		
	TFLOPS	0.1	0.1		
2000 x 2000 (32 x 32)	Power (W)	1024	6.4		
	# of chips	1024	1		

CONVOLUTION SEEKER MISSILE DESIGN

3 Degrees

Requires
Seeker Gimbals
Roll to Hit Guidance
Divert propulsion
Attitude Propulsion
Wings and Fins
Massive Software
Unnatural Complexity

Convolution Array

220 Degrees

Enables
Electronic Strap down
Trim to Hit Guidance
Mass Moment Steering
Natures Firmware
Natural Simplicity

COMPUTATIONAL MACHINES

LASER WAVE FRONT

SUB PIXEL RESOLUTION

MOTION TRACKING

NEW CHIP

UNIFORMITY CORRECTION

BMC4I COMPRESSION

SENSOR MULTI PATH

SENSOR

SENSOR MULTI SOURCE **MULTI SPECTRAL**

TAPPING 200 MILLION TALENTS

Convolution Array

Convolution Engine PCI

Convolution Desktop

NDIA KEYNOTE TOPICS

Evolutionary Fix of Legacy Systems
Proper Threat Physics Definition
Clock Speed Word Length Bandwidth
Defining the Readiness of Technology
NASA and DOD Levels of Incongruity
Physics Based Description of Possibilities
Next Hardware Emulation Architectures

Reimbursable Unintended Consequences

Joint Programs for Future System Science People Come for Science and Money

SAME TEST ISSUES AT TWO RANGES

KREMS OPERATIONAL ASSETS

SIMILAR MISSIONS UNSHARED TESTING GOALS

S S STATE OF STATE OF

EXISTING INFRASTRUCTURE BMDO DEFENSE

NDIA KEYNOTE TOPICS

Evolutionary Fix of Legacy Systems Proper Threat Physics Definition Clock Speed Word Length Bandwidth Defining the Readiness of Technology NASA and DOD Levels of Incongruity Physics Based Description of Possibilities **Next Hardware Emulation Architectures** Reimbursable Unintended Consequences Joint Programs for System Science **People Come for Science and Money**

A JOINT SYSTEM

Standard Hardware Common Software Assured Interoperability Streamlined Logistics

HIGHLY EFFECTIVE PROGRAM INVESTMENT

Operational In the Army
Proven On The Coronado
Assured Service Interoperability
Strong User Demand
Leverages Commercial Technology

REAL CAPABILITY AVAILABLE NOW

IMAGE REGISTRATION INFRASTRUCTURE

REAL TIME ACCESS TO ALL SENSORS

TRANSFER IMAGE BASED BMC4 METHODOLOGY

Threat Strike

Threat Defense

All Workstations Identical 'Windows For The Warrior'

MISSILE DEFENSE TRADITIONAL FORCES

MISSION COORDINATION

NDIA KEYNOTE TOPICS

Evolutionary Fix of Legacy Systems Proper Threat Physics Definition Clock Speed Word Length Bandwidth Defining the Readiness of Technology NASA and DOD Levels of Incongruity Physics Based Description of Possibilities **Next Hardware Emulation Architectures** Reimbursable Unintended Consequences Joint Programs for System Science **People Come for Science and Money**

INDEPENDENT OVERSIGHT MANAGEMENT

DOD DIRECTIVES CLEARLY STATE INDEPENDENT GOVERNMENT ASSESSMENT AND DIRECTION **OF PROGRAM CONTENT AND PROGRESS**

ASSESSMENT MONIES AND PROGRAM MONIES NOT COMINGLED

THEN AND NOW

NATIONAL TECHNOLOGY 300 BEST SCIENTISTS DESIGNED SYSTEM THEN
ABRES

ACQUISITION

TECHNOLOGY

ATLAS

5 MILE CEP 5 MEGATON 50%RELIABLE

ATLAS

TITAN

488 FLIGHTS

MM I POLARIS

MM II POSEIDON

100 FOOT CEP 360 KILOTON 100% RELIABLE

MM III TRIDENT

5000 OFFENSIVE MISSILES

SDIO
TECHNOLOGY
300 BEST
SCIENTISTS
DESIGNED
SYSTEM

ACQUISITION

NOW

WHAT

TECHNOLOGY

ENTRY WARNING IDENTIFICATION HIT TO KILL

TECHNOLOGY

ROBUST WARNING IDENTIFICATION HIT TO KILL TMD NMD

BLOCK I

BLOCK II

BLOCK III

TO DATE 0 DEFENSIVE MISSILES

Engineer and Scientist Program Exodus

^{*} International Cooperative Programs, Intelligence Program, BMDO Architecture and Engineering, BMDO Test and Evaluation, Pentagon Maintainence Reservation Fund, HQ Management and Acquisition Program Reserve

TECHNOLOGY BURSTS FOR NATIONAL DEFENSE

FIX THE TALENT ATROPHY

NDIA PRESENTATION

